
Functions in SQL

Course objectives

 Describe various types of

functions that are available in

SQL

 Describe the use of group

functions

By completing this course, you will be able to:

Functions in SQL

Course topics

Course’s plan:

Functions in SQL

 Using Single-Row

Functions to Customize

Output

 Reporting Aggregated

Data Using the Group

Functions

Single-Row Functions

Functions in SQL

 SQL Functions.

 Character Functions.

 Number Functions.

 Date Functions.

 Conversion Functions.

 General Functions.

 Conditional Expressions

Single-Row Functions

Preview

SQL Functions

Single-Row Functions

 FUNCTION

 Result Value

Output Input

arg 1

arg 2

arg n

Functions performs

 actions

SQL Functions

Single-Row Functions

 FUNCTION

Single-row

functions

Multiple-row

functions

Return one result

 per row
Return one result

 per set of rows

Two Types of SQL Functions

 Manipulate data items

 Accept arguments and return one value

 Act on each row that is returned

 Return one result per row

 May modify the data type

 Can be nested

 Accept arguments that can be a column or an expression

Single-Row Functions

SQL Functions

Single-row functions:

function_name [(arg1, arg2,...)]

SQL Functions

Single-Row Functions

Single-row functions:

Conversion Date

Character

General Number
Single-row

functions

Character Functions

Single-Row Functions

Case-manipulation

 functions

Character

functions

Character-manipulation

 functions

LOWER

UPPER

INITCAP

CONCAT

SUBSTR

LENGTH

INSTR

LPAD | RPAD

TRIM

REPLACE

Function Result

LOWER('SQL Course') sql course

UPPER('SQL Course') SQL COURSE

Sql Course INITCAP('SQL Course')

Single-Row Functions

Character Functions

Using Case-Manipulation Functions

 These functions convert case for character strings:

Single-Row Functions

Character Functions

SELECT employee_id, last_name, department_id

FROM employees

WHERE last_name = 'higgins' ;

no rows selected

SELECT employee_id, last_name, department_id

FROM employees

WHERE LOWER(last_name) = 'higgins';

Using Case-Manipulation Functions

 Display the employee number, name, and department

number for employee Higgins:

Function Result

CONCAT('Hello', 'World') HelloWorld

SUBSTR('HelloWorld',6,5) World

10

6

LENGTH('HelloWorld')

INSTR('HelloWorld', 'W')

Single-Row Functions

Character Functions

These functions manipulate character strings:

*****24000 LPAD(salary,10,'*')

24000***** RPAD(salary, 10, '*')

BLACK and BLUE REPLACE('JACK and JUE','J','BL')

elloWorld TRIM('H' FROM 'HelloWorld')

Character Functions

Single-Row Functions

SELECT employee_id, CONCAT(first_name, last_name)

 NAME,job_id, LENGTH (last_name),

 INSTR(last_name, 'a') "Contains 'a'?"

FROM employees

WHERE SUBSTR(job_id, 4) = 'REP';

Using the Character-Manipulation Functions

1

1

2

2 3

3

Character Functions

Single-Row Functions

SELECT SUBSTR('Hello World', 4)

FROM DUAL;

Using SUBSTR Function with different arguments:

SELECT SUBSTR('Hello World', -4)

FROM DUAL;

SELECT SUBSTR('Hello World', -4,3)

FROM DUAL;

Function Result

ROUND(45.926, 2) 45.93

TRUNC(45.926, 2) 45.92

100 MOD(1600, 300)

Single-Row Functions

Number Functions

 ROUND: Rounds value to specified decimal

 TRUNC: Truncates value to specified decimal

 MOD: Returns remainder of division

Number Functions

Single-Row Functions

Using the ROUND Function

SELECT ROUND(45.923,2), ROUND(45.923,0),

 ROUND(45.923,-1)

FROM DUAL;

1

1

2

2 3

3

 DUAL is a dummy table that you can use to view results

from functions and calculations.

Number Functions

Single-Row Functions

Using the TRUNC Function

SELECT TRUNC(45.923,2), TRUNC(45.923),

 TRUNC(45.923,-1)

FROM DUAL;

1

1

2

2

3

3

Number Functions

Single-Row Functions

Using the MOD Function

SELECT last_name, salary, MOD(salary, 5000)

FROM employees

WHERE job_id = 'SA_REP';

 For all employees with job title of Sales Representative,

calculate the remainder of the salary after it is divided by

5,000.

Date Functions

Single-Row Functions

Working with Dates

 The Oracle database stores dates in an internal numeric

format: century, year, month, day, hours, minutes, and

seconds.

 The default date display format is DD-MON-RR.

 Enables you to store 21st-century dates in the 20th

century by specifying only the last two digits of the year

 Enables you to store 20th-century dates in the 21st

century in the same way

SELECT last_name, hire_date

FROM employees

WHERE hire_date < '01-FEB-88';

Date Functions

Single-Row Functions

Working with Dates

 SYSDATE is a function that returns:

 Date

 Time

Date Functions

Single-Row Functions

Arithmetic with Dates

 Add or subtract a number to or from a date for a resultant
date value.

 Subtract two dates to find the number of days between
those dates.

 Add hours to a date by dividing the number of hours by
24.

Date Functions

Single-Row Functions

Using Arithmetic Operators with Dates

SELECT last_name, (SYSDATE-hire_date)/7 AS WEEKS

FROM employees

WHERE department_id = 90;

Function Result

MONTHS_BETWEEN Number of months between two dates

ADD_MONTHS Add calendar months to date

Next day of the date specified NEXT_DAY

Single-Row Functions

Date Functions

LAST_DAY Last day of the month

ROUND Round date

Truncate date TRUNC

Function Result

MONTHS_BETWEEN

 ('01-SEP-95','11-JAN-94')
19.6774194

ADD_MONTHS ('11-JAN-94',6) '11-JUL-94'

'08-SEP-95' NEXT_DAY ('01-SEP-95','FRIDAY')

Single-Row Functions

Date Functions

LAST_DAY ('01-FEB-95') '28-FEB-95'

Function Result

ROUND(SYSDATE,'MONTH') 01-AUG-03

ROUND(SYSDATE,'YEAR') 01-JAN-04

01-JUL-03 TRUNC(SYSDATE,'MONTH')

Single-Row Functions

Date Functions

Example

Assume SYSDATE = '25-JUL-03':

TRUNC(SYSDATE,'YEAR') 01-JAN-03

Conversion Functions

Single-Row Functions

Implicit data type

conversion

Explicit data type

conversion

 Data type

conversion

From To

VARCHAR2 or CHAR NUMBER

VARCHAR2 or CHAR DATE

VARCHAR2 NUMBER

Single-Row Functions

Conversion Functions

Implicit Data Type Conversion

DATE VARCHAR2

 For assignments, the Oracle server can automatically

convert the following:

From To

VARCHAR2 or CHAR NUMBER

VARCHAR2 or CHAR DATE

Single-Row Functions

Conversion Functions

Implicit Data Type Conversion

 For expression evaluation, the Oracle Server can

automatically convert the following:

Retrieving Data Using the SQL SELECT Statement

Conversion Functions

Explicit Data Type Conversion

TO_DATE

DATE

TO_CHAR

TO_NUMBER

TO_CHAR

NUMBER CHARACTER

 The format model:

 Must be enclosed by single quotation marks

 Is case-sensitive

 Can include any valid date format element

 Has an fm element to remove padded blanks or

suppress leading zeros

 Is separated from the date value by a comma

Single-Row Functions

Conversion Functions

Using the TO_CHAR Function with Dates

TO_CHAR(date, 'format_model')

Element Result

YYYY Full year in numbers

YEAR Year spelled out (in English)

Two-digit value for month

Full name of the month

MM

MONTH

Single-Row Functions

Conversion Functions

Elements of the Date Format Model

Three-letter abbreviation of the month MON

Three-letter abbreviation of the day of the week DY

Full name of the day of the week DAY

Numeric day of the month DD

Numeric day of the week D

 Time elements format the time portion of the date:

 Add character strings by enclosing them in double

quotation marks:

 Number suffixes spell out numbers:

Single-Row Functions

Conversion Functions

Elements of the Date Format Model

HH24:MI:SS AM 15:45:32 PM

DD "of" MONTH 12 of OCTOBER

ddspth fourteenth

Single-Row Functions

Conversion Functions
Using the TO_CHAR Function with Dates

SELECT last_name,

 TO_CHAR(hire_date, 'fmDD Month YYYY')

 AS HIREDATE

FROM employees;

…

20 rows selected.

Element Result

9 Represents a number

0 Forces a zero to be displayed

Places a floating dollar sign $

Single-Row Functions

Conversion Functions
Using the TO_CHAR Function with Numbers

L Uses the floating local currency symbol

. Prints a decimal point

TO_CHAR(number, 'format_model')

, Prints a comma as thousands indicator

 These are some of the format elements that you can use
with the TO_CHAR function to display a number value as a

character:

Single-Row Functions

Conversion Functions
Using the TO_CHAR Function with Numbers

SELECT TO_CHAR(salary, '$99,999.00') SALARY

FROM employees

WHERE last_name = 'Ernst';

 Convert a character string to a number format using the
TO_NUMBER function:

 Convert a character string to a date format using the
TO_DATE function:

 These functions have an fx modifier. This modifier
specifies the exact matching for the character argument
and date format model of a TO_DATE function.

Single-Row Functions

Conversion Functions
Using the TO_NUMBER and TO_DATE Functions:

TO_NUMBER(char[, 'format_model'])

TO_DATE(char[, 'format_model'])

Single-Row Functions

Conversion Functions
RR Date Format

If two digits

of the

current year

are:

0-49 50-99

0-49

If the specified two-digit year is:

50-99

The return date is in

the current century

The return date is in

the century before

the current one

The return date is in

the century after the

current one

The return date is in

the current century

Single-Row Functions

Conversion Functions
RR Date Format

Current Year

1995

1995

2001

2001

Specified Date

27-OCT-95

27-OCT-17

27-OCT-17

27-OCT-95

RR Format

1995

2017

2017

1995

YY Format

1995

1917

2017

2095

 To find employees hired prior to 1990, use the RR date

format, which produces the same results whether the

command is run in 1999 or now:

Single-Row Functions

Conversion Functions
Example of RR Date Format

SELECT last_name,TO_CHAR(hire_date,'DD-Mon-YYYY')

FROM employees

WHERE hire_date < TO_DATE('01-Jan-90','DD-Mon-RR');

 Single-row functions can be nested to any level.

 Nested functions are evaluated from deepest level to the

least deep level.

Single-Row Functions

Conversion Functions

Nesting Functions

F3 (F2 (F1(col, arg1), arg2), arg3)

Step 3 = Result 3

Step 2 = Result 2

Step 1 = Result 1

Single-Row Functions

Conversion Functions

Nesting Functions

SELECT last_name,

 UPPER(CONCAT(SUBSTR(LAST_NAME,1,8),'_US'))

FROM employees

WHERE department_id = 60;

 The following functions work with any data type and

pertain to using nulls:

 NVL (expr1, expr2)

 NVL2 (expr1, expr2, expr3)

Single-Row Functions

General Functions

 Converts a null value to an actual value:

 Data types that can be used are date, character, and

number.

 Data types must match:

 NVL(commission_pct,0)

 NVL(hire_date,'01-JAN-97')

 NVL(job_id,'No Job Yet')

Single-Row Functions

General Functions
NVL Function

Single-Row Functions

General Functions
Using the NVL Function

SELECT last_name, salary, NVL(commission_pct, 0),

 (salary*12) +

 (salary*12*NVL(commission_pct, 0)) AN_SAL

FROM employees;

1

1 2

2

Single-Row Functions

General Functions
Using the NVL2 Function

SELECT last_name, salary, commission_pct ,

 NVL2(commission_pct, 'SAL+COMM', 'SAL')

 income

FROM employees

WHERE department_id IN (50, 80);

1

1 2

2

 Provide the use of IF-THEN-ELSE logic within a SQL

statement

 Use two methods:

 CASE expression

 DECODE function

Single-Row Functions

Conditional Expressions

Conditional Expressions

 Facilitates conditional inquiries by doing the work of an
IF-THEN-ELSE statement:

Single-Row Functions

Conditional Expressions
CASE Expression

CASE expr

 WHEN comparison_expr1 THEN return_expr1

 [WHEN comparison_expr2 THEN return_expr2

 WHEN comparison_exprn THEN return_exprn

 ELSE else_expr]

END

Single-Row Functions

Conditional Expressions
Using the CASE Expression

SELECT last_name, job_id, salary,

 CASE job_id

 WHEN 'IT_PROG‘ THEN 1.10*salary

 WHEN 'ST_CLERK' THEN 1.15*salary

 WHEN 'SA_REP' THEN 1.20*salary

 ELSE salary

 END "REVISED_SALARY"

FROM employees;

…

20 rows selected.

…

…

 Facilitates conditional inquiries by doing the work of a
CASE expression or an IF-THEN-ELSE statement:

Single-Row Functions

Conditional Expressions
DECODE Function

DECODE(col|expression, search1, result1

 [, search2, result2,...,]

 [, default])

Single-Row Functions

Conditional Expressions
Using the DECODE Function

SELECT last_name, job_id, salary,

 DECODE(job_id, 'IT_PROG', 1.10*salary,

 'ST_CLERK', 1.15*salary,

 'SA_REP', 1.20*salary,

 salary)

 REVISED_SALARY

FROM employees;

…

20 rows selected.

…

…

 Display the applicable tax rate for each employee in

department 80:

Single-Row Functions

Conditional Expressions
Using the DECODE Function

SELECT last_name, salary,

 DECODE (TRUNC(salary/2000, 0),

 0, 0.00,

 1, 0.09,

 2, 0.20,

 3, 0.30,

 4, 0.40,

 5, 0.42,

 6, 0.44,

 0.45) TAX_RATE

FROM employees

WHERE department_id = 80;

SQL Functions
Number

Function

Conversion

Function

Part 1 Summary

Single-Row Functions

Character

Function

Expression

of condition
Global

Function

Group Functions

Functions in SQL

 Presentation

 Creating groups

 Restricting Group Results

Group Functions

Preview

 Group functions operate on sets of rows to give one result

per group.

Group Functions

What Are Group Functions?

EMPLOYEES

Presentation

Maximum salary in
EMPLOYEES table

Group Functions

Presentation

 AVG

 COUNT

 MAX

 MIN

 STDDEV

 SUM

 VARIANCE

Types of Group Functions

Group

Functions

Group Functions

Presentation

 SELECT [column,] group_function(column), ...

 FROM table

[WHERE condition]

[GROUP BY column]

[ORDER BY column];

Group Functions: Syntax

Group Functions

Presentation

SELECT AVG(salary), MAX(salary),

 MIN(salary), SUM(salary)

FROM employees

WHERE job_id LIKE '%REP%';

You can use AVG and SUM for numeric data.

Group Functions

Presentation

SELECT MIN(hire_date), MAX(hire_date)

FROM employees;

You can use MIN and MAX for numeric, character,

and date data types.

 COUNT(expr) returns the number of rows with non null

values for the expr:

Group Functions

Presentation

SELECT COUNT(*)

FROM employees

WHERE department_id = 50;

Using the COUNT Function

SELECT COUNT(commission_pct)

FROM employees

WHERE department_id = 80;

 COUNT(*) returns the number of rows in a table:

 COUNT(DISTINCT expr) returns the number of distinct

non-null values of the expr.

 To display the number of distinct department values in
the EMPLOYEES table:

Group Functions

Presentation
Using the DISTINCT Keyword

SELECT COUNT(DISTINCT department_id)

FROM employees;

Group Functions

Presentation

SELECT AVG(commission_pct)

FROM employees;

Group Functions and Null Values

SELECT AVG(NVL(commission_pct, 0))

FROM employees;

 Group functions ignore null values in the column:

 The NVL function forces group functions to include null

values:

Group Functions

Creating Groups of Data

EMPLOYEES

4400

9500

3500

6400

10033

Creating Groups

Average salary
in EMPLOYEES

table for each

department

 You can divide rows in a table into smaller groups by
using the GROUP BY clause.

Group Functions

Creating Groups
GROUP BY Clause Syntax

 SELECT column, group_function(column)

 FROM table

[WHERE condition]

[GROUP BY group_by_expression]

[ORDER BY column];

Group Functions

Creating Groups

SELECT department_id , AVG(salary)

FROM employees

GROUP BY department_id;

Using the GROUP BY Clause

 All columns in the SELECT list that are not in group
functions must be in the GROUP BY clause.

Group Functions

Creating Groups

SELECT AVG(salary)

FROM employees

GROUP BY department_id ;

Using the GROUP BY Clause

 The GROUP BY column does not have to be in the
SELECT list.

Group Functions

Grouping by More Than One Column

EMPLOYEES

Creating Groups

Add the salaries

in the
EMPLOYEES

table for each job,

grouped by

department.

Group Functions

Creating Groups

SELECT department_id dept_id, job_id, SUM(salary)

FROM employees

GROUP BY department_id, job_id ;

Using the GROUP BY Clause on Multiple Columns

Group Functions

Creating Groups

SELECT department_id, COUNT(last_name)

FROM employees;

Illegal Queries Using Group Functions

 Any column or expression in the SELECT list that is not
an aggregate function must be in the GROUP BY clause:

SELECT department_id, COUNT(last_name)

 *

ERROR at line 1:

ORA-00937: not a single-group group function

Column missing in the GROUP BY clause

Group Functions

Creating Groups

SELECT department_id, AVG(salary)

FROM employees

WHERE AVG(salary) > 8000

GROUP BY department_id;

Illegal Queries Using Group Functions

 You cannot use the WHERE clause to restrict groups.

 You use the HAVING clause to restrict groups.

 You cannot use group functions in the WHERE clause.

WHERE AVG(salary) > 8000

 *

ERROR at line 3:

ORA-00934: group function is not allowed

here

Cannot use the WHERE clause to restrict groups

Group Functions

EMPLOYEES

Restricting Group Results

The maximum

salary

per department

whien it is

greater than

$10,000

Group Functions

Restricting Group Results

 SELECT column, group_function

 FROM table

[WHERE condition]

[GROUP BY group_by_expression]

[HAVING group_condition]

[ORDER BY column];

Restricting Group Results with the HAVING Clause

 When you use the HAVING clause, the Oracle server

restricts groups as follows:

 Rows are grouped.

 The group function is applied.

 Groups matching the HAVING clause are displayed.

Group Functions

Restricting Group Results

SELECT department_id, MAX(salary)

FROM employees

GROUP BY department_id

HAVING MAX(salary)>10000;

Using the HAVING Clause

Group Functions

Restricting Group Results

SELECT job_id, SUM(salary) PAYROLL

FROM employees

WHERE job_id NOT LIKE '%REP%'

GROUP BY job_id

HAVING SUM(salary) > 13000

ORDER BY SUM(salary);

Using the HAVING Clause

Group Functions

Restricting Group Results

SELECT MAX(AVG(salary))

FROM employees

GROUP BY department_id;

Display the maximum average salary:

Use the HAVING

clause

COUNT, MAX,

MIN and AVG

Part 2 Summary

Use the GROUP

BY clause

Group Functions

Part 3 Stop-and-think

Labs: Functions in SQL

Do you have any questions ?

For more

Functions in SQL

Courses Publications

Web sites

http://www.oracle.com

Cursus: Merise & SQL

Cursus: PL/SQL

Cursus: DBA1 & DBA2

Cursus: DWH & BIS

If you want to go into these subjects more deeply, …

http://www.labo-oracle.com

http://www.oracle.../bookstore/

http://otn.oracle.com

Certifications

1Z0-007

http://www.oracle.com/
http://www.labo-oracle.com/
http://www.labo-oracle.com/
http://www.labo-oracle.com/
http://www.onlinelearningconference.com/
http://www.oracle.com/technology/bookstore/index.html
http://otn.oracle.com/

The end

Functions in SQL

